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A TENSION SHELL STRUCTURE FOR APPLICATION 

TO ENTRY VEHICLES 

By Melvin S. Anderson, James C. Robinson, 

Langley Research Center 
Harold G. Bush, and Robert W. Fral ich 

The shape of a s h e l l  of revolution designed t o  have only t e n s i l e  s t resses  
under a x i s m e t r i c  aerodynamic loadings has been derived on the basis  of l i n e a r  
membrane theory. 
values of circumferential tension i s  a l so  given. The r e su l t s  of t h i s  paper 
indicate  tha t  t he  design of an entry vehicle based on the tension s h e l l  concept 
leads t o  desirable aerodynamic and s t ruc tu ra l  character is t ics ,  namely, high 
drag and low weight. 

The drag coefficient f o r  various proportions and various 

INTRODUCTION 

The discussion of entry in to  t h i n  planetary atmospheres presented i n  ref-  
erences 1 and 2 indicates  t h a t  f o r  such an environment, a very low value of the  
b a l l i s t i c  coefficient would be necessary t o  obtain reasonable dwell times i n  
the  atmosphere o r  t o  obtain low enough speeds f o r  parachute deployment. A s  the  
b a l l i s t i c  coefficient decreases, the  s t ruc tu ra l  weight f rac t ion  increases, and 
f o r  t h i n  atmospheres such as t h a t  of Mars the s t ruc tu ra l  weight can become so 
large t h a t  conventional s t ruc tu ra l  concepts lead t o  a vehicle with l i t t l e  pay- 
load capabili ty.  This behavior i s  due i n  par t  t o  the f ac t  t h a t  the  s t ruc tu ra l  
design of most a i r c r a f t  and entry vehicles i s  controlled by loading conditions 
t h a t  cause buckling t o  be a primary design factor .  
than the  material  strength capabili ty.  
the  strength of the  material, a s t ruc tu ra l  concept has been developed which 
r e s i s t s  t he  primary s t ruc tu ra l  loadings by t e n s i l e  s t resses  over a major por- 
t i o n  of t he  vehicle surface and thus permits a more e f f i c i en t  s t ruc tu ra l  design. 
This concept, shown i n  f igure l ( a ) ,  w a s  introduced i n  reference 1 as a possible 
solution t o  the  problem of entry in to  t h i n  planetary atmospheres. The payload 
i s  assumed t o  be concentrated i n  the  forward portion of the  vehicle and sup- 
ported by a s h e l l  t h a t  i s  shaped t o  r e s i s t  the  aerodynamic loadings by t e n s i l e  
s t resses .  The tension i n  the  s h e l l  i s  res i s ted  by a compression r ing at  t h e  
base of the  vehicle. 
development of t he  tension s h e l l  concept and t o  discuss some of i t s  
character is t ics .  

Thus, s t resses  are lower 
I n  order t o  take be t t e r  advantage of 

The purpose of t h i s  paper i s  t o  describe the  mathematical 



SYMBOLS 

al, a2, a, a' constants of integration 

Kqrb - 
2 N O  

shape parameter associated with Newtonian pressure, A2 

B2 
porb - shape parameter associated with uniform pressure, 
a0 

C2 shape parameter i n  equation (34) defining proportion of catenary 
curve 

D CD drag coefficient,  - 
qfirb2 

D drag force 

e r f ( A )  = 2 LA emX2dx 
fi 

er ror  function 

E(E,,B) = LE d m  dx e l l i p t i c  in tegra l  of second kind 

e l l i p t i c  in tegra l  of f irst  kind dx L' K T z z  F ( E , ~ )  = 

2B2 G =  
1 + fa 

In(h),Kn(h) modified Bessel functions of order n 

k integer 

K constant used i n  Newtonian pressure d is t r ibu t ion  

n order of Bessel function 

circumferential and meridional s t r e s s  resultants,  respectively, 
posi t ive i n  tension 

N d c p  

NO Ncp evaluated at  r = rb 

P pressure acting on shel l ,  posit ive outward 
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magnitude of uniform external pressure 

dynamic pressure of airstream 

radia l  coordinate 

radius of tension s h e l l  at forward end and a t  base, respectively 

pr incipal  r a d i i  of curvature of s h e l l  i n  meridional and circum- 
f e r e n t i a l  directions,  respectively 

new dependent variable i n  d i f f e ren t i a l  equation (see eq. (11)) 

longltudinal coordinate of s h e l l  

.. 

11 + B2(1 - p') 
2 

7 = s in-  [ 
r ( n )  = e'xxn'ldx gama function 

6 =  P :B2 
-1 B2 
'/l + B2 

E = cos 

71 = 
1 + G2 

8 circwnferential coordinate 
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222p2-a 
A =  

2 - a  

p = L I”b 
nondimensional r ad ia l  coordinate 

value of p f o r  which t a n  cp is  i n f i n i t e  ha 

cp meridional coordinate 

J O  

MATHEMATICAL DEVELOPMENT OF THE SHAPE 

OF THE TENSION SHELL STRUCTURE 

I n  the  mathematical development of the  shape of the  tension s h e l l  struc- 
t u r e  presented herein, an axisymmetric vehicle is considered t o  be entering a 
low-density atmosphere. It is improbable t h a t  the  s t ruc tu ra l  s h e l l  of such a 
vehicle can be designed so t h a t  t e n s i l e  s t resses  ex i s t  f o r  a l l  loading condi- 
t ions.  However, a design can be made such t h a t  at zero angle of a t tack suf f i -  
c ient  tension can be provided t o  allow for deviations from t h i s  condition. 
mathematical development of t h i s  configuration i s  based on the  following 
assumptions: 
metric pressure d is t r ibu t ion .  
system.) 
of s t r e s s  based on l i n e a r  membrane theory with 
( 3 )  The aft end of the  s h e l l  terminates with a compression ring. 
f i g .  l (a) . )  AJ-though the  design of the ring i s  not considered i n  t h i s  analysis, 
t he  concentration of the  compression material  i n  a s ingle  member would be 
expected t o  lead t o  an e f f i c i en t  design. 
la rge  compared with the  dimensions of t he  payload, which i s  assumed t o  be con- 
centrated a t  the s m a l l  forward end and supported by a ring. 
i s  reasonable f o r  l i g h t l y  loaded vehicles entering low-density atmospheres. 

The 

(1) The s t ruc ture  i s  a she l l  of revolution subject t o  an axisym- 

(2) The pressure loading i s  assumed t o  produce a pure membrane s t a t e  
(See f i g .  1 f o r  comYguration and coordinate 

some constant r a t io .  Ne/Ncp 
(See 

(4)  The dimensions of the  s h e l l  are 

This assumption 

The analysis proceeds from the  appropriate membrane equilibrium equations 
f o r  a s h e l l  of revolution subject t o  axisymmetric loadings. 
a r e  (see r e f .  3 )  

These equations 
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P 
N e  
'2 

+ - =  

where 

1 s i n  cp 
r 2  r 
- =  ( 4 )  

It i s  assumed t h a t  there  i s  no force i n  the  z-direction on the  compression 
ring a t  r = q,. Therefore, t he  curve o f  the  meridian must have a horizontal  
tangent at  r = q,; thus, 

a2 - = -tan cp = 0 
dr  

If N e  = allcp where a i s  a constant, equation (1) becomes 

Ncp = 0 dNcp 1 - a - + -  
d r  r 

( 5 )  

The solution f o r  Ncp i s  

It should be noted t h a t  t h i s  solution i s  independent of the  pressure dis t r ibu-  
t i o n  and t h a t  f o r  t h e  case a = 1, Ncp i s  constant throughout t he  she l l .  
(From the  def in i t ion  of a, N e  a l so  has the  same constant value.) With the  
use of equations ( 3 ) ,  (4), and (7), equation (2)  becomes 

This equation may be solved f o r  s i n  cp f o r  any pressure dis t r ibut ion;  then, 
t a n  cp, which equals 
respect t o  r, the  z-coordinates of the  desired configuration a r e  obtained as 
a function of r. 
t h a t  given by Newtonian impact theory and t h a t  resul t ing from a uniform pres- 
sure d is t r ibu t ion .  

-dz/dr, i s  determined, and i f  t h i s  i s  integrated with 

Solutions have been obtained f o r  two pressure dis t r ibut ions,  

These solutions are presented i n  the  following sections.  
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Newtonian Pressure Distribution 

The pressure given by Newtonian theory i s  taken i n  the  form 

By subst i tut ing equation ( 9 )  i n to  equation (8) and by using 
d i f f e r e n t i a l  equation f o r  s i n  cp becomes 

p = r/Q, the  

where 

This nonlinear d i f f e r e n t i a l  equation i s  a form of the  Riccati  equation and may 
be solved by using the  following subst i tut ion (see ref. 4): 

du 1 s i n  cp = - - 
dP &up(l-a) 

Equation (10) then becomes 

l - a  
2 - a  

The solution f o r  u i f  - does not equal an integer  i s  

where 

l - a  
2 - a  

n = -  

and I n  i s  the  modified Bessel function of t he  f i rs t  kind of order n. Sub- 
s t i t u t i n g  equation (13) i n t o  equation (11) (see ref. 5 f o r  properties of Bessel 
functions and t h e i r  derivatives) gives 
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where 

From equation (14) it can be seen t h a t  as a varies  from 0 t o  1, n var ies  
from 1/2 t o  0 and, therefore, equation (16) w i l l  generally involve the 
fractional-order Bessel functions. The boundary condition, given as equa- 
t i o n  ( 5 ) ,  implies t h a t  s i n  cp = 0 at  p = l. Therefore, 

a = - -  

For the  special  case a = 0, n = 1/2; therefore, the Bessel functions 
appearing i n  equation (16) can be expressed i n  terms of hyperbolic functions as 

The expression f o r  s i n  cp now becomes 

In  addition, 

dz 
d r  - = -tan cp = -sinh 

This equation can be integrated i n  terms of 
functions, which a re  tabulated i n  reference 
a = O  i s  

the  e r ror  in tegra l  and related 
5 .  The expression f o r  z f o r  

Since i n  the  general case negative f rac t iona l  orders of the  Bessel func- 
t i ons  a re  involved i n  equation (16), which a re  not usually found i n  mathemati- 
ca l  tables,  it m a y  be necessary t o  use the  function 
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C' 

which has been tabulated f o r  cer ta in  f rac t iona l  values of n. The expression 
f o r  s i n  cp then becomes 

where 

Equation (22) i s  a l so  val id  f o r  in tegra l  values of n ( a  = 1, f o r  
example). I n  reference 5 t he  functions I n  and Kn are tabulated f o r  
n = l /3 and n = 2/3, which are  the  flmctions required f o r  a = 1/2. 

Tabulations of I n  and Kn f o r  other f rac t iona l  values of n appear t o  
be rare and perhaps nonexistent. 
use the  following se r i e s  expansion for In(h)  (see ref. 5 ) :  

Hence, i n  the  general case it i s  necessary t o  

M 

k=O 

Once s i n  cp i s  determined, t he  z-coordinate can be obtained by a simple numer- 
i c a l  integration of dz/dr = -tan cp. 

Since t h i s  configuration i s  considered f o r  an entry vehicle, the  drag coef- 
f i c i e n t  i s  an important quantity t o  be determined. 
face of t he  s h e l l  lying between r = ra and r = q, may be determined simply 

by taking the  z-component of N q  at  r = ra and integrating around the  cir-  
cumference. Thus, 

The drag acting on the  sur- 

D = (2rc1-N~ s i n  c p )  
T = r g  

The drag coefficient re la ted t o  the  base area can be obtained f o r  Newtonian 
flow from equation (7) and equation (25) as 
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where s i n  cp i s  obtained from equation (16) or  equation (22). For the special  
case a = 0, 

Uniform Pressure Distribution 

An insight  i n t o  t h e  influence of loading on the  shape of the  tension s h e l l  
can be obtained by looking at  the  r e su l t s  f o r  a uniformly d is t r ibu ted  pressure, 
which i s  a s igni f icant ly  d i f fe ren t  loading from t h a t  applied by Newtonian flow. 
This uniform pressure shape can be obtained from equation (8) by se t t i ng  the  
pressure constant (p  = -po). The solution f o r  s i n  cp then becomes 

where 

and use has been made of the  boundary condition (see eq. ( 5 ) )  at r = r b' 

For cer ta in  values of a, t he  z-coordinate can be expressed i n  terms of 
e l l i p t i c  integrals .  For example, i f  a = 0 

f o r  B2 1 and 

f o r  B2 2 1, where 

€1 = 

7 = sin' 
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and F and E are e l l i p t i c  integrals  of t h e  first and second kind, respec- 
t ive ly .  For a = 1 

where 

2B2 G =  

1 + 

For the  general case, s i n  cp can be determined from equation (28) and z 
can be obtained numerically as i n  the  case of Newtonian flow. 

RESULTS AND DISCUSSION 

Newtonian Flow Shape 

Meridian curves have been calculated from the  Newtonian flow analysis f o r  
several  values of t h e  parameters A2 and Ne/Nq. The coordinates are given 
i n  table 1 and a typ ica l  set of curves i s  shown i n  f igure 2. Calculations were 
made with a d i g i t a l  computer by using equation (16) f o r  
expansion f o r  t he  Bessel function (eq. (24)) .  
were usually found t o  be suff ic ient  f o r  the  range of arguments considered. 
Values of s i n  cp and dz/dr were calculated f o r  values of r/Q at in te rva ls  
of 0.01, and z w a s  determined by a simple numerical integration. For a = 0, 
t h e  results of t h e  numerical procedure were compared with those of t he  closed- 
form solution (see eq. (21) )  and the differences were less than 0.Q percent. 

s i n  cp and the ser ies  
Four t o  s i x  terms i n  the  se r i e s  

Figure 2(a) shows t h a t  f o r  Ne/Ncp = 0, a l l  curves intersect  t he  r = 0 
axis; however, figure 2(b) shows t h a t  f o r  
some nonzero value of with a ve r t i ca l  tangent ( s i n  cp = l), and some form 
of closure would have t o  be provided. 
a t ions would probably d i c t a t e  terminating the  tension she l l  a t  some nonzero 
value of r and using a compression s t ructure  such as a spherical cap f o r  the  
remainder of t he  vehicle. 

N e / N q  > 0, t he  curves terminate a t  
r 

Even for Ne,/Ncp = 0, prac t ica l  consider- 

Since the  drag coefficient i s  a very important fac tor  i n  the design of an 
entry vehicle, it i s  of i n t e re s t  t o  calculate t he  drag coefficient f o r  some of 
t he  more promising configurations. Accordingly, t he  drag coefficient i s  
plot ted i n  f igure 3 f o r  representative values of A2 and Ne/Ncp. For these 

10 



calculations, t h e  constant K i n  t h e  expression f o r  Newtonian pressure w a s  
taken as  2. For = 0 the  bodies were considered t o  terminate a t  a point 
so t h a t  CD i s  given by ( see eq. ( 2 7 ) )  

When Ne/Ncp > 0 
attached at  the  point where the  tangent t o  the  meridian curve w a s  i n f in i t e .  
t h i s  point i s  denoted as 
i s  1, t h e  drag coefficient f o r  t he  complete configuration i s  given by (see 

the bodies were considered t o  have a hemispherical cap 
If 

pm, and since the  drag coefficient f o r  a hemisphere 

eq* ( 2 6 ) )  

If any of these configurations were terminated a t  a la rger  radius with a seg- 
ment of a spherical cap, a higher theore t ica l  drag than t h a t  shown i n  f igure 3 
would resu l t .  Figure 3 shows t h a t  high drag coefficients can be obtained. f o r  
configurations with reasonable overal l  proportions. Thus, t he  concept of t he  
tension she l l  appears applicable t o  the  design of an e f f i c i en t  entry vehicle. 
However, it should be recognized t h a t  t he  complete s h e l l  would not be i n  ten- 
sion, since a payload attachment r ing i s  required near the  forward end. This 
ring could probably be located at  or l e s s  so t h e  area of compres- 
sive s t ructure  compared with the  t o t a l  area would be qui te  s m a l l  and would not 
lead t o  a large weight penalty. The high drag coefficients indicate  tha t  t h i s  
concept might a l so  be used t o  advantage f o r  a deployable decelerator. Such a 
concept w a s  proposed i n  reference 6 where the  equation f o r  a uniform pressure 
shape w a s  given. 

r rb = 1/4 1 

It should be noted t h a t  t h e  shape i s  not a function of t he  magnitude of 
t h e  loading; t ha t  is, t he  same configuration would be applicable throughout t he  
range of dynamic pressures encountered i n  flight though, of course, t he  
s t resses  would vary with dynamic pressure. A l s o ,  the  shape has been derived by 
use of a rather  simple aerodynamic theory; but use of more refined theories i s  
probably not warranted, since other loading conditions must be considered. 
Deviations i n  flow conditions and angle of attack from t h a t  considered w i l l  
change t h e  s t r e s s  s i tua t ion  somewhat but probably not enough t o  a l t e r  t he  basic  
concept of treating t h e  s h e l l  as a tension structure.  

Uniform Pressure Shape 

A s  mentioned previously, t h e  results f o r  uniform pressure can be used t o  
obtain an indication of how sensi t ive the  shape of the  tension s h e l l  i s  t o  a 
change i n  pressure dis t r ibut ions.  Coordinates f o r  t h e  uniform pressure shape 
are given i n  t ab le  2 f o r  several  values of Ne/Nq, and a typ ica l  set 
of these shapes i s  shown i n  f igure  4. 
t h a t  f o r  t h e  Newtonian flow shape except t h a t  

B2 and 
The calculation procedure w a s  s i m i l a r  t o  

s i n  cp w a s  determined from 
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equation (28). For Ne/N'p = 0 equations (29)  and (30 )  could also be used t o  
check the accuracy of the  numerical procedure. 
and Ne/Nv = 0, the  curves in te rsec t  t h e  r = 0 axis. Otherwise, they have 
been terminated at  a nonzero value of r where s i n  'p = 1; t h i s  r e su l t  i s  
s i m i l a r  t o  t he  r e su l t  f o r  the  Newtonian pressure d is t r ibu t ion  with 
A typ ica l  comparison of t he  uniform pressure shape with the Newtonian flow 
shape f o r  configurations with the same end points i s  shown i n  f igure 5. 
geometric differences a r e  not large, an indication tha t  the  shape i s  not sensi- 
t i v e  t o  the  pressure dis t r ibut ion.  

Figure 4 shows t h a t  i f  B2 < 1 

N e / N p  > 0. 

The 

Catenary Shape 

One disadvantage of the  r e su l t s  obtained so  f a r  i s  t h a t  the coordinates 
of the  meridian curve cannot be given i n  terms of elementary functions. The 
form of equation (20) suggests a somewhat simpler expression. If p2 i s  
replaced by p, equation (20) becomes 

- dz = -si& c2(1 - p )  
dr  

Integrating equation (34) gives 

z = -kosh 1 C 2 ( 1  - p )  - 13 
rb c2 

(34) 

( 3 5 )  

which i s  the  equation of a catenary. 
equation ( 3 5 )  with the Newtonian flow shape i s  shown i n  f igure 6 f o r  
and Ne/NV = 0.15. 
and the  curve f o r  
sure d is t r ibu t ion  acting on these configurations are given i n  f igure 7. Inas- 
much as the catenary i s  very s i m i l a r  t o  t he  curve f o r  N e / N q  = 0.15, circum- 
f e r e n t i a l  tension s t resses  would be expected, which indeed i s  the  case. The 

A comparison of the  catenary given by 
Ne/Nq = 0 

The s t resses  resul t ing from a Newtonian pres- 
The curves do not d i f f e r  greatly, especially the  catenary 

N e / N ' p  = 0.15. 

circumferential s t r e s s  resul tant  reaches a value N at the base. These 

s t resses  would be of benefit  i n  s tab i l iz ing  the  s h e l l  f o r  other loading con- 
di t ions.  It should be noted tha t  the  circumferential s t r e s s  N e  i s  very sen- 
s i t i v e  t o  s m a l l  changes i n  the  shape i n  the  v i c in i ty  of the  base; t h i s  sensi- 
t i v i t y  might require special  consideration i n  the  vehicle design. 

2 ' p  

The s t r e s s  resul tants  f o r  the  Newtonian shape were obtained from equa- 
t i on  (7) and the  def in i t ion  of A2 as 

12 



o r  f o r  N ~ / N ~  = o 

“ P = L  
qrb A2p 

(37)  

The s t resses  i n  the  catenary are  obtained by solving equations (1) and ( 2 ) ,  and 
the  resu l t  i s  

N e  1 

N9 Sinh2C2(1 - p )  + sinh C 2 ( 1  - p)cosh C 2 ( 1  - p )  

I n  cosh C 2 ( 1  - p )  PC2 

( 3 9 )  

Although the  catenary does not result i n  a constant value of Ne/NT, Ne and 

Nq are always t e n s i l e  quantit ies,  and thus, t h e  catenary conforms t o  the  ten- 
sion she l l  concept. 
t h e  catenary may be of advantage i n  subsequent aerodynamic o r  s t ruc tura l  
analysis. 

The simplicity of t he  expression f o r  t h e  meridian shape of 

CONCLUDING REMARKS 

An entry vehicle configuration has been developed t h a t  r e s i s t s  t he  aero- 
dynamic loadings a t  zero angle of attack and has only t e n s i l e  s t resses  over a 
major portion of t he  vehicle surface. The configuration would be especially 
sui ted f o r  application t o  vehicles entering th in  atmospheres where low values 
of t he  b a l l i s t i c  coefficient a re  required. The use of a tension s t ructure  
eliminates buckling as a design c r i te r ia ,  which can result i n  a s ignif icant  
increase i n  payload f o r  these l o w  values of b a l l i s t i c  coeff ic ient .  Calculated 
drag coefficients f o r  the  more promising configurations are re la t ive ly  high 
(on the  order of l .5),  which i s  desirable f o r  a b a l l i s t i c  entry vehicle. A 
configuration can be determined f o r  any r a t i o  of circumferential s t r e s s  t o  
meridional stress, although prac t ica l  l imitat ions on overa l l  dimensions may 
l i m i t  t h i s  r a t i o  t o  approximately 0.3. The coordinates of t h e  derived shapes 
cannot be expressed by elementary functions, but a catenary can be used t o  
closely approximate t h e  shape f o r  purposes of analysis.  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., December 10, 1964. 
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TABLE 1.- COORDINATfE FOR “I‘ONIAN FLOW SHAPE 

3 
-05 
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TABLF 2.- COORDINATES FOR UNIFORM PRESSURE SHAPE 
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(b) Configuration and coordinate system. 

Figure 1.- Tension s h e l l  entry vehicle. 
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(a )  Variation with shape parameter A*. Ne/Nq = a = 0. 

Figure 2.- Newtonian flow shape. 
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Figure 2.- Concluded. 
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Figure 3. -  Variation of drag coeff ic ient  with shape parameter A2 f o r  various values 
of Ne/Nq). 
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(a) Variation with B2. N@/Nv = 0. 

Figure 4.- Uniform pressure shape. 
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(b)  Variation with Ne/%. B2 = 0.8. 

Figure 4.- Concluded. 
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Figure 5.- Effect of pressure distribution on shape of tension shel l .  
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